skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cech, Erin A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although development of Artificial Intelligence (AI) technologies has been underway for decades, the acceleration of AI capabilities and rapid expansion of user access in the past few years has elicited public excitement as well as alarm. Leaders in government and academia, as well as members of the public, are recognizing the critical need for the ethical production and management of AI. As a result, society is placing immense trust in engineering undergraduate and graduate programs to train future developers of AI in their ethical and public welfare responsibilities. In this paper, we investigate whether engineering master’s students believe they receive the training they need from their educational curricula to negotiate this complex ethical landscape. The goal of the broader project is to understand how engineering students become public welfare “watchdogs”; i.e., how they learn to recognize and respond to their public welfare responsibilities. As part of this project, we conducted in-depth interviews with 62 electrical and computer engineering master’s students at a large public university about their educational experiences and understanding of engineers’ professional responsibilities, including those related specifically to AI technologies. This paper asks, (1) do engineering master’s students see potential dangers of AI related to how the technologies are developed, used, or possibly misused? (2) Do they feel equipped to handle the challenges of these technologies and respond ethically when faced with difficult situations? (3) Do they hold their engineering educators accountable for training them in ethical concerns around AI? We find that although some engineering master’s students see exciting possibilities of AI, most are deeply concerned about the ethical and public welfare issues that accompany its advancement and deployment. While some students feel equipped to handle these challenges, the majority feel unprepared to manage these complex situations in their professional work. Additionally, students reported that the ethical development and application of technologies like AI is often not included in curricula or are viewed as “soft skills” that are not as important as “technical” knowledge. Although some students we interviewed shared the sense of apathy toward these topics that they see from their engineering program, most were eager to receive more training in AI ethics. These results underscore the pressing need for engineering education programs, including graduate programs, to integrate comprehensive ethics, public responsibility, and whistleblower training within their curricula to ensure that the engineers of tomorrow are well-equipped to address the novel ethical dilemmas of AI that are likely to arise in the coming years. 
    more » « less
  2. Existing academic structures and norms perpetuate the mistreatment and marginalization of scholars resulting in a climate that is misaligned with the values of academics from marginalized groups. Therefore, we study how climates at multiple levels of the academy (i.e., research group, department, and professional field) shape marginalized scholars’ careers and career attitudes. Participants (N = 3,204) were doctoral students, postdoctoral fellows, and assistant professors from four science fields (biology, physics, economics, and psychology) who completed an online survey about psychological safety and intragroup conflict within their research group, climate of diversity within their department, climate of scholarly inclusion within their professional field, and their career outcomes. We conducted three general structural equation models with marginalized identity status predicting three career outcomes: turnover intentions, burnout disengagement, and burnout exhaustion. We also tested the mediation effect of climate at the levels of the research group, department, and profession on these career outcomes. Participants with a greater number of marginalized identities experienced a more negative climate at all three levels compared to those with no and fewer marginalized identities. The climate experienced at these three levels also significantly mediated all three career outcomes for marginalized scholars. Climate of scholarly inclusion at the level of the profession was especially strongly related to intent to leave and burnout. These results add to the breadth of research on multiply marginalized scholars’ negative experiences of academic climates and point to areas that may be particularly important for interventions. 
    more » « less
  3. Abstract BackgroundEngineers are professionally obligated to protect the safety and well‐being of the public impacted by the technologies they design and maintain. In an increasingly complex sociotechnical world, engineering educators and professional institutions have a duty to train engineers in these responsibilities. Purpose/HypothesisThis article asks, where are engineers trained in their public welfare responsibilities, and how effective is this training? We argue that engineers trained in public welfare responsibilities, especially within engineering education, will demonstrate greater understanding of their duty to recognize and respond to public welfare concerns. We expect training in formal engineering classes to be more broadly impactful than training in contexts like work or professional societies. Data/MethodsWe analyze unique survey data from a representative sample of US practicing engineers using descriptive and regression techniques. ResultsConsistent with expectations, engineers who received public welfare responsibility training in engineering classes are more likely than other engineers to understand their responsibilities to protect public health and safety and problem‐solve collectively, to recognize the importance of social consequences and ethical responsibilities in their own jobs, to have noticed ethical issues in their workplace, and to have taken action about an issue that concerned them. Training through other parts of college, workplaces, or professional societies has comparatively little impact. Concerningly, nearly a third of engineers reported never being trained in public welfare responsibilities. ConclusionThese results suggest that training in engineering education can shape engineers' long‐term understanding of their public welfare responsibilities. They underscore the need for these responsibilities to be taught as a core, non‐negotiable part of engineering education. 
    more » « less
  4. This is a full Innovative Practice paper. Engineering professionals are increasingly called on to serve as “public welfare watchdogs” by paying heed to ways in which complex technologies can impact society and intervening when ethical issues arise. Though it is a goal of engineering education to train engineers to recognize and understand their responsibilities to the safety, health, and welfare of the public, research suggests that students are inadequately prepared to address such issues in practice. To address this concern, we designed and piloted a course module for electrical engineering master’s students to help them better address their public welfare responsibilities. In this paper, we provide a detailed description of the course module, including reflection prompts, in-class presentations, breakout group activities, discussion prompts, and post-class assignments. We also present results from our pilot, including a summary of student responses to the reflection and discussion prompts and an overview of students’ course feedback. 
    more » « less
  5. Postindustrial societies are characterized by complex technological objects and systems. The publics therein are increasingly reliant on engineers to take public welfare into account when designing and maintaining these objects and systems and raise awareness when public welfare is threatened. The training engineers receive in their engineering undergraduate education is thus expected to foster their sense of responsibility to public welfare, but such training may be absent or insufficient. In this paper, we draw on a survey of 120 employed engineers in the US to assess the extent to which they received formal public responsibility training in their undergraduate education and to assess the relationships between this training and their response to one of four randomly assigned ethical dilemmas. We find that engineers who reported receiving training in public welfare responsibilities as undergraduate students felt better prepared to address public welfare issues than those who had not received such training. Individuals with training in public welfare responsibilities were less likely to identify the ethical dilemma as irrelevant to their work, indicate that such dilemmas happen all the time, be uncomfortable reporting the issue, and believe that their colleagues might respect them less if they report. These findings have implications for improving engineering ethics education and ethical conduct trainings within engineering practice more broadly. 
    more » « less
  6. Grundy, Quinn (Ed.)
    Early research on the impact of COVID-19 on academic scientists suggests that disruptions to research, teaching, and daily work life are not experienced equally. However, this work has overwhelmingly focused on experiences of women and parents, with limited attention to the disproportionate impact on academic work by race, disability status, sexual identity, first-generation status, and academic career stage. Using a stratified random survey sample of early-career academics in four science disciplines ( N = 3,277), we investigated socio-demographic and career stage differences in the effect of the COVID-19 pandemic along seven work outcomes: changes in four work areas (research progress, workload, concern about career advancement, support from mentors) and work disruptions due to three COVID-19 related life challenges (physical health, mental health, and caretaking). Our analyses examined patterns across career stages as well as separately for doctoral students and for postdocs/assistant professors. Overall, our results indicate that scientists from marginalized (i.e., devalued) and minoritized (i.e., underrepresented) groups across early career stages reported more negative work outcomes as a result of COVID-19. However, there were notable patterns of differences depending on the socio-demographic identities examined. Those with a physical or mental disability were negatively impacted on all seven work outcomes. Women, primary caregivers, underrepresented racial minorities, sexual minorities, and first-generation scholars reported more negative experiences across several outcomes such as increased disruptions due to physical health symptoms and additional caretaking compared to more privileged counterparts. Doctoral students reported more work disruptions from life challenges than other early-career scholars, especially those related to health problems, while assistant professors reported more negative changes in areas such as decreased research progress and increased workload. These findings suggest that the COVID-19 pandemic has disproportionately harmed work outcomes for minoritized and marginalized early-career scholars. Institutional interventions are required to address these inequalities in an effort to retain diverse cohorts in academic science. 
    more » « less